Caveolin-1 Is Critical for Lymphocyte Trafficking into Central Nervous System during Experimental Autoimmune Encephalomyelitis.

نویسندگان

  • Hao Wu
  • Ruixia Deng
  • Xingmiao Chen
  • Waiman Connie Wong
  • Hansen Chen
  • Lei Gao
  • Yichu Nie
  • Wutian Wu
  • Jiangang Shen
چکیده

UNLABELLED Multiple sclerosis (MS) is a progressive autoimmune disease of the CNS with its underlying mechanisms not fully understood. In the present study, we tested the hypothesis that caveolin-1, a major membrane scaffolding protein, plays a critical role in the pathogenesis of experimental autoimmune encephalomyelitis, a laboratory murine model of MS. We found increased expression of caveolin-1 in serum and spinal cord tissues in association with disease incidence and severity in wild-type mice with active encephalomyelitis. After immunization, Cav-1 knock-out mice showed remarkable disease resistance with decreased incidence and clinical symptoms. Furthermore, Cav-1 knock-out mice had alleviated encephalitogenic T cells trafficking into the CNS with decreased expressions of adhesion molecules ICAM-1 and VCAM-1 within the lesions. In agreement with in vivo studies, in vitro knockdown of caveolin-1 compromised the upregulation of ICAM-1 in endothelial cells, leading to the amelioration of the transendothelial migration of pathogenic TH1 and TH17 cells. Together, those results indicate that caveolin-1 serves as an active modulator of CNS-directed lymphocyte trafficking and could be a therapeutic target for neuroinflammatory diseases, such as multiple sclerosis. SIGNIFICANCE STATEMENT The hallmark feature of neuroinflammatory diseases is the massive infiltrations of encephalitogenic leukocytes into the CNS parenchyma, a process that remains largely unclear. Our study demonstrates the critical contribution of caveolin-1 to encephalomyelitis pathogenesis and CNS-directed lymphocyte trafficking by modulation of adhesion molecules ICAM-1 and VCAM-1, highlighting the pathological involvement of caveolin-1 in neuroinflammatory diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 6: Kininogen Deficiency Ameliorates Neuroinflammation by Reducing Immune Cell Trafficking

Enhanced immune cell trafficking into the central nervous system (CNS) and disruption of the blood brain barrier are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, recent studies suggest that the coagulation and the contact-kinin system might also be involved in MS developme...

متن کامل

P77: NADPH Oxidase Type 4 Inhibits Immune Cell Trafficking into The Central Nervous System During Neuroinflammation

Transendothelial trafficking of immune cells into the central nervous system (CNS) and disruption of the blood brain barrier (BBB) are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS). Accumulating evidence suggest that oxidative stress plays a major role in the pathogenesis of MS, whereas a specific influence of oxidative stress on BBB dysfunction in MS ...

متن کامل

Liver Damage and Mortality in a Male Lewis Rat of Experimental Autoimmune Encephalomyelitis

Background and Objectives: Multiple sclerosis is an inflammatory disease of the central nervous system. This is due to migration of peripherally activated lymphocytes to central nervous system leading to inflammatory lesions. However, liver has an anti-inflammatory microenvironment. Myelin expression in the liver of transgenic mice suppresses inflammatory lesions within central nervous system. ...

متن کامل

Sphingosine 1-phosphate receptor 1 (S1P(1)) upregulation and amelioration of experimental autoimmune encephalomyelitis by an S1P(1) antagonist.

Sphingosine 1-phosphate receptor 1 (S1P(1)) is a G protein-coupled receptor that is critical for proper lymphocyte development and recirculation. Agonists to S1P(1) are currently in use clinically for the treatment of multiple sclerosis, and these drugs may act on both S1P(1) expressed on lymphocytes and S1P(1) expressed within the central nervous system. Agonists to S1P(1) and deficiency in S1...

متن کامل

Sphingosine 1-Phosphate Receptor 1 (S1P1) Upregulation and Amelioration of Experimental Autoimmune Encephalomyelitis by an S1P1 Antagonist s

Sphingosine 1-phosphate receptor 1 (S1P1) is a G protein– coupled receptor that is critical for proper lymphocyte development and recirculation. Agonists to S1P1 are currently in use clinically for the treatment of multiple sclerosis, and these drugs may act on both S1P1 expressed on lymphocytes and S1P1 expressed within the central nervous system. Agonists to S1P1 and deficiency in S1P1 both c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 36 19  شماره 

صفحات  -

تاریخ انتشار 2016